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Abstract

Advanced hepatocellular carcinoma (HCC) has restricted treatment options
and low survival, therefore early detection is crucial since even a little
improvement may result a significant improvement in HCC patients survival
rates. Recent developments in methods for early detection of HCC have
focused on the analysis of trajectories of multiple biomarkers, assuming
biomarkers to follow a joint hierarchical mixture model with random
changepoints. We propose an innovative extension that consists in the
inclusion of baseline covariates to the model on multiple longitudinal
biomarkers trajectories. We want to assess whether covariates could capture
a component of variation of biomarkers trajectories in order to improve early
detection. A MCMC algorithm was conducted to derive posterior
distributions and the posterior risk of being a case for each patient. The data
from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis
(HALT-C) Trial contains valuable information about multiple longitudinal
biomarkers AFP and DCP in cirrhosis patients with an extensive follow-up.
The screening algorithm is applied in simulations studies under a range of
possible scenarios and then in the HALT-C Trial using in-sample validation.
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Chapter 1

Introduction

Advanced hepatocellular carcinoma (HCC) is the most common liver cancer
that affects people worldwide. It has a poor survival primarily due to the lack
of effective treatments for late stage patients, that represent the majority of
cases at diagnosis. Early detection is critical for this kind of cancer, and even
a little improvement may result a significant improvement in survival rates.

Recent developments in methods for early detection of HCC patients have
focused on the analysis of trajectories of multiple biomarkers, assuming for
them and in particular for their changepoints a joint model. Longitudinal
biomarkers are indeed an essential tool for screening test, because they
totally respect desirable characteristics of the test. Indeed, they are
non-invasive in order to reduce patients anxiety and clinical costs and they
are also inexpensive, to allow a widespread use.

The model proposed here is an innovative extension of the fully Bayesian
hierarchical joint model (mFB) outlined in Tayob et al. [2018]. The extension
consists of the inclusion of baseline covariates to the model on multiple
biomarkers trajectories. The aim of the new proposed method is to find out
whether pre-analysis clinical features in addition to biomarkers levels are able
to improve early detection.

The accuracy of the new screening algorithm has to be evaluated before
being applied in a prospective study. Therefore, simulation studies have been
conducted to assess whether covariates could catch a component of variation
of biomarkers trajectories, variation that is not explained in the newest
approach in Tayob et al. [2018]. The hepatitis C antiviral long-term
treatment against cirrhosis (HALT-C) trial contains valuable information
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CHAPTER 1. INTRODUCTION

about multiple longitudinal biomarkers in cirrhosis patients with an extensive
follow-up. The HALT-C dataset has indeed been used to evaluate the current
screening algorithm once its accuracy has been ensured in the simulation
phase.

This work will demonstrate that the new approach has a higher
sensitivity than the old approach when covariates play an key role in
predicting the biomarkers trajectories (section 5.1.3).

The thesis is organized as follows: in chapter 2 the background is described,
in particular there is the description of HALT-C Trial data. In chapter 3
diagnostic tests are explained and their main features are described; in
addition a first sketch of the new screening approach is given. In chapter 4 all
the elements of the new screening test are outlined, including the joint model
for covariates-adjusted multiple biomarkers and the computational procedure
implemented to obtain necessary posterior distributions for the computation
of the posterior risk of disease. Chapter 5 reports results from multiple
scenarios simulation studies. Once the new screening approach has been
assessed on simulation studies, it has been applied to real data. Results of
applying the new screening approach on the HALT-C Trial are also reported
in section 5. In chapter 6 a discussion is given.

12



Chapter 2

Background

This chapter starts with an introduction to HCC, a discussion on the
relevance of early detection for this disease and on biomarkers potential. It is
then described the HALT-C trial, a prospective study that has been
implemented to collect and analyze two biomarkers of interest, AFP and
DCP.

2.1 Hepatocellular Carcinoma

Hepatocellular carcinoma, the most common liver cancer, affects half a million
people each year, with 20000 people in the United States alone. Liver cancer
is in the top-10 most common cancers in both men and women, respectively
at the fifth and seventh rank [El-Serag and Mason, 1999], [El-Serag, 2011].

Hepatocellular carcinoma incidence is higher in developing countries, where
the transmission of the hepatitis B virus (HBV) is endemic, i.e. it is rooted
in that particular regions from mother to newborns. Indeed, hepatocellular
carcinoma is linked to infections by HBV or hepatitis C virus (HCV). The onset
of those infections have become one the main rising causes of hepatocellular
carcinoma.

Hepatocellular carcinoma occurs rarely before the age of 40, and it has
its edge-risk at 70 years old. Moreover, the incidence raised in the past years
among hispanics and white people. In the United States it has been seen that
during the last 2 decades the incidence of hepatocellular carcinoma (HCC)
increased 3 times, while the 5-year survival diseased patients were steadily less
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than 12% [El-Serag and Mason, 1999].
It has been seen that HBV and HCV are two of the main risk factors to

cause the occurrence of the hepatocellular carcinoma. The risk they bring
depends on magnitude on the ethnic group and on geographic region.
Overall, they cause the occurrence of cirrhosis. Indeed, the 80-90% of HCC
cases have cirrhosis. In cirrhosis diseased patients the increasing risk of
developing a hepatocellular carcinoma goes from 5% to 30% within 5 years.
The risk variability depends on the cause of cirrhosis (HCV, HBV, fatty liver
disease or others), on the geographic region and on the stage of cirrhosis.

Among hepatocellular carcinoma cases the 50% is infected by HBV.
Moreover, the 70-80 % of HBV and hepacellular carcinoma diseased patients
have also cirrhosis. Therefore it is likely that hepatocellular carcinoma, HBV
and cirrhosis are strictly linked to each other. The risk of liver cancer onset
in the HBV-infected patients varies on: gender, age, time of infection, family
cancer history, use of alcohol or tobacco and the co-presence of HCV
infection or hepatitis.

But the only presence of HBV is less risky than HCV. Indeed, HCV
infection is the higher risk factor and it is at most dangerous with the
co-presence of liver fibrosis. Risk of developing a hepatocellular carcinoma in
HCV-infected patients is 15-20 times more likely than in HCV-free people. It
has been seen that in Italy the 40-60% of liver cancer diseased are infected by
HCV, while in the United States the percentage is up to the 50% and it is
expected to increase in the next 3 decades. The variability of the risk of
HCV-infection on cancer onset depends on age (the older the higher risk),
gender (males have the highest risk), co-presence of HBV, diabetes or
obesity, use of alcohol.

In the United States 30-40% of hepacellular carcinoma cases are not infected
by neither HCV nor HBV. Therefore there are other risk causes. One of the
main secondary causes could be the obesity factor. Hispanic and white races
have been found to be likely to contract HCC the most. Lastly, drinking coffee
has been luckily found to be related with a lower risk to develop liver cancer
[El-Serag, 2011].

2.1.1 Early Detection and Biomarkers Potential

Early detection is an incredible powerful tool to improve survival of cancer
patients. A patient diagnosed with an early stage cancer has multiple treatment
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options and therefore the probability to recover from the disease is higher than
late-stage detection patients. Especially, what it have been seen about HCC,
early detection allows patients to find a successful treatment. Furthermore,
early detected patients 5-years survival is over 60%, while later stage patients
survival is up to 10% [Bruix and Sherman, 2005].

In order to successfully increase early detection, screening tests are used to
identify the disease at the most curable stage. A screening test is a method of
secondary prevention and it deals with the detection of a disease before the
symptoms appearance. On the other hand, for a low-incidence disease it is
frequent that a test results positive but it is truly not. That is why screening
tests for early detection have the second aim of keeping low the false positive
rate to avoid clinical and financial wastes [Skates et al., 2001].

The six-month ultrasonography is used in order to detect HCC but many
problems arise using this method because ultrasonography is: operator
dependent, not easily performed in obese patients, not sensitive for early
lesions and there are significant problems about quality variability among
hospital facilities [Tayob et al., 2018].

Biological markers - or biomarkers - offer an inexpensive non-invasive
approach for screening, although the disadvantage is about their large
intervals collection, that is annual. In respect to the disease onset they may
behave differently: some biomarkers levels can rise exponentially, while others
do not. Usually, continuous biomarkers are converted in dichotomous in order
to establish a cut-off level to determine the disease status.

Usually the diagnostic HCC biomarker serum α-Fetoprotein (AFP) is
integrated to ultrasonography. It has a notable sensitivity between 41% and
100%, and specificity between 70% and 95%. Moreover, Des-γ
carboxy-prothrombin (DCP) has shown its potential as a complementary
screening biomarker in detecting HCC [Tayob et al., 2018].

2.1.2 HALT-C trial

The target population for HCC surveillance is composed by cirrhosis patients.
The Hepatitis C Antiviral Long-term Treatment (HALT-C) Trial aimed to
prevent fibrosis progression in HCV-infection patients through the evaluation
of an interferon-based therapy (Tayob et al. [2018]).

Patients underwent a long follow-up and were monitored to control the
development of HCC. They were visited every 3 months for the first 42 months
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and every 6 months thereafter. Patients underwent clinical tests, including
AFP in local laboratories and DCP in a central laboratory, but just for the first
42 months. They occasionally had a liver ultrasound at 6, 18, 30, 42 months
and every 6 months thereafter. Patients with new lesions on ultrasound or
high level of AFP were further evaluated with computed tomography (CT)
and magnetic resonance imaging (MRI).

HCC diagnosis was based on imaging with or without AFP in absence
of histology. HCC has been evaluated on all the patients of the 2 treatment
groups.

HCV-cirrhosis patients are at high risk to contract HCC therefore they
are recommended for surveillance. The data consist in 48 HCC cases and 361
control patients without HCC. The median follow-up period is about 78
months.
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Chapter 3

Statistical methods

Diagnostic tests are described in this chapter. Especially the concepts of
sensitivity, specificity and ROC curve are outlined. Moreover, the
computation of the predictive value of a test is given. Then, the new
screening method is described.

3.1 Diagnostic tests

Diagnostic tests are able to detect patients recently affected by the disease
of interest. A diagnostic test has some desirable characteristics that make it
an ideal test. It is desirable to have it fast in the execution, safe and simple.
Moreover, it is wanted to be as less invasive as possible, in the better cases
painless. It is preferable to have it cheap and reliable.

A diagnostic test has a predictive variable that indicates the result of the
test and a outcome variable that represents presence or absence of the disease.

The aim of diagnostic tests is to discriminate between cases and heath
patients, given 4 different situations resulting form the combination of disease
status (positive and negative) and test result (positive and negative).
Everything is represented in the following table

Diseased Patient (+) Disease-free Patient(-)
Positive Test (+) TP FP
Negative Test (-) FN TN

Total TP+FN FP+TN
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where TP means true positive, FP means falso positive, FN means false
negative and TN means true negative.

Two measures are used to assess the goodness in prediction of a diagnostic
test: sensitivity and specificity. Sensitivity represents the proportion of cases
that truly have a positive test out of all the diseased patients

SE =
TP

TP + FN

while specificity represents the proportion of healthy patients with a truly false
test out of all the healthy patients

SP =
TN

TN + FP
.

When sensitivity is higher, specificity is lower. The contrary happens as well.
It depends on the nature of disease (rare or common) which one of these 2
measures has to prevail: for a rare disease it is better to have less false positive
so higher sensitivity. On the contrary, for a common disease false negative
rate therefore higher specificity is better. Making mistakes about detecting a
rare disease in truly disease-free patients could produce clinical and economic
drawbacks. Therefore, being as much precise as possible is preferred. As well
as identifying as much as possible cases with a not rare disease is desirable.

Test result can be continuous or discrete. When it is continuous a threshold
has to be chosen to make decisions about the outcome. With the threshold
choice it is possible to make sensitivity or specificity prevails (necessarily when
one gets higher the other gets lower, and vice-versa).

The receiver operating characteristic (ROC) curve is another way to set
the threshold to a certain value. The curve is given by all the combinations of
sensitivity and specificity of the model by varying the threshold. It is possible
to represent the ROC curve on a Cartesian plain with sensitivity on the y
axis and 1 - specificity on the x axis. Sensitivity is the proportions of how
many diseased have a positive test result, at the contrary (1 - specificity) is
how many without the disease have a positive test result. The best result is
when sensitivity is as close as possible to 1 and (1 - specificity) is as close as
possible to 0: the ideal test results in the left-hand upper side of the graph.
When it happens, the area under the ROC curve (AUC) is close to 1, that is
the optimum point. A value of 0.5 is what it is expected to find randomly.
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Each patient has a prior probability to have the disease before undertaking
the test, with respect to demographic and clinical characteristics.

Given D+ when the patient is diseased and D− when the patient is healthy,
T+ and T− when the test is respectively positive and negative, the predictive
value of a positive test is defined as follows

PV + = P (D+|T+) =
P (T+|D+) · P (D+)

P (T+|D+) · P (D+) + P (T+|D−) · P (D−)

where P (T+|D+) = SE and P (T+|D−) = 1− SP .
The predictive value of a positive test represents the probability of truly

having the disease given positive result of the test itself .
While, the predictive value of a negative test is defined as

PV − = P (D−|T−) =
P (T−|D−) · P (D−)

P (T−|D−) · P (D−) + P (T−|D+) · P (D+)

where P (T−|D−) = SP and P (T−|D+) = 1− SE.
The predictive value of a negative test represents the probability of truly

not having the disease given negative result of the test itself.
The most common method to carry out a diagnostic test consists in fixing

a threshold and representing a ROC curve to assess the results. This method
is simplistic and has some limitations:

1. a common threshold is chosen for all patients;

2. only one biomarker is usually used for the detection of a disease. No
combination methods for multiple biomarkers is outlined;

3. one screening value is used to assess the disease status, that coincide with
the last one measured. No screening values over time are used.

All these limitations allow to create a new approach of screening.

3.2 New screening test

A new approach of screening test is computed: a subject-specific threshold is
chosen with respect to patients involved in the screening test. Multiple
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biomarkers are used to detect the asymptomatic disease, and they are factors
of a unique joint model. All patients are followed up over time and all the
screening values are used to detect the onset disease, not only the last one in
time.

One of the main aspect is how biomarkers are considered jointly because
usually they behave in different ways when the disease onset shows up. The
time point the biomarker trajectory changes is easily called the changepoint.
In the method the similarity between changepoints of different biomarkers
with respect to the same disease onset is assumed. Overall, an increase in
biomarker level is considered indicative of a latent disease onset. On the
contrary, a possible decrease in biomarker level can be easily adjusted. The
behaviour of all measured biomarkers at the disease onset is considered
jointly. The joint model of the changepoints allows to borrow information
across the biomarkers in order to identify the changepoints more subtle. This
happens when changepoints are not easily identifiable but the patient the
changepoints belong to is diseased. Indeed, there are cases where only one
biomarker trajectory is not enough to capture a changepoint: it means that
some biomarkers are not enough to catch a fundamental possible signal of the
disease onset (Chapter 5).
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Chapter 4

Statistical Methods for
Longitudinal Biomarkers

The method implemented in this work is a innovative contribution to the
model in Tayob et al. [2018]. It is indeed a covariates-adjusted fully Bayesian
hierarchical changepoints and mixture models of longitudinal biomarkers. The
aim is to capture biomarkers trajectories, especially trajectories changepoints
in order to detect HCC cases at the earlier stage, with the additional use of
covariates.

In this chapter a literature review is made at the beginning, than the new
screening approach is deeply outlined.

4.1 Literature review

Some of the developed screening methods about early detection of HCC are
reported as the starting point of this work:

• McIntosh and Urban [2003], univariate parametric empirical Bayes

• Skates et al. [2001], fully Bayesian screening algorithm for a single
longitudinal biomarker trajectory;

• Tayob et al. [2018], fully Bayesian screening algorithm for multiple
longitudinal biomarkers.
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BIOMARKERS

All these methods are outlined in a very generalized way. The reason is that all
methods work with any biomarker and can be applied to any asymptomatic
disease. After outlining the already known approaches, the new method is
explained in a more deep way and especially for this particular case - AFP,
DCP on HCC detection.

4.1.1 Univariate parametric empirical Bayes

The idea McIntosh and Urban [2003] had was to implement a model that
incorporated prior screening history of case patient and a model on biomarkers
in control patients. The model is called univariate parametric empirical Bayes
(uPEB).

Let Yij1 be the biomarker level. The disease status is denoted by D and
assumes one of 2 values for the i− th patient: Di = 0 when patient is disease-
free at time di therefore the marker level varies randomly around its mean θi1
following the model

Yij1 ∼ N(θi1, σ
2
1)

θi1 ∼ N(µθ1 , σθ1)

where, given θi1 the biomarker levels Yij1 are independent and identical
distributed. Within-subject variance σ2

1 and between-subject variance σθ1 are
key measures in this method. Biomarker levels can be standardized to
simplifies the computation:

Zij = (Yij1 − µθ1)/
√
σ2
1 + σθ1

therefore
Zij|µi ∼ N(µi, 1−B1)

µi ∼ N(0, B1) where B1 =
σθ1

σθ1 + σ2
1

This method is an extension of the standard threshold (ST) screening
approach that do not use the past screening history of each patient indeed a
fixed threshold is chosen for all the patients.

The threshold is chosen in order to keep the false-positive rate (FPR) among
control patients less than f0. As Zij is distributed as a standard Normal, the
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probability P (Zij > z1−f0) = f0 where z1−f0 is the 100(1-f0) quantile of the
standard Normal distribution. Therefore, a patient is considered diseased when
its own Zij exceeds the threshold z1−f0

Zij > z1−f0 → case patient.

when µi is known for each patient, the threshold can be personalized. The
probability is (P (Zij − µi)/

√
1−B1 > z1−f0|µi) = f0, and a patient is

considered diseased when its own Zij exceeds the threshold µi + z1−f0
√

1−B1

Zij > µi + z1−f0
√

1−B1 → case patient

Since µi is not known, it is estimated µ̂ij as a weighted mean between the
population mean and the sample mean of the past screening history for each
patient.

The rule to decide whether the patient is diseased is the following

Zij > µ̂ij + z1−f0
√

1−B1Bj → case patient

where µij = 0 · (1 − Bj) + Z̄ij · Bj, with Z̄ij =
1

j − 1

∑j−1
j′=1 Zij′ and Bj =

σθ1
σ2
1/(j − 1) + σθ1

.

4.1.2 Univariate Bayesian

Skates et al. [2001] proposed a univariate fully Bayesian screening algorithm
(uFB) for a unique longitudinal biomarker trajectory.

Model

Let Yij1 be the marker level, where i indicates patient, j indicates screening
time, tij indicates the visit time measured in years from the entry date, and
1 is for the unique biomarker index. The disease status is denoted by D that
assumes the following 2 values for the i− th patient:

• Di = 0 when patient is disease-free at time di and the marker level varies
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randomly around the mean θi1 following the model

Yij1 = θi1 + εij1

with Normal distributed errors.

• Di = 1 when patient is diseased at time di. Ii1 is an indicator for the
existence of a changepoint and is defined to distinguish between the 2
cases when Di = 1 occurs. If Ii1 = 0 the marker level trajectory does not
change after disease onset so it varies as randomly around the mean as in
control patients. On the other side, if Ii1 = 1 the marker level fluctuates
randomly around a constant mean θi1 until the disease onset at time τi1,
whence the marker level is added of a linear rate γi1 as the time increases
from the changepoint, following the model

Yij1 = θi1 + γi1(tij − τi1)+ + εij1 (4.1)

with Normal distributed errors. ()+ is the positive part of the expression.

Therefore the assumption is that the marker level linearly increases after
the disease onset; for this reason some appropriate transformations are
made to adjust the decreasing trajectories after the disease onset.

Priors

• Variance 1/σ2
1 of biomarker has a uninformative Jeffreys’ prior;

• biomarker level mean θi1 has a Normal distribution N(µθ1, σ
2
θ1);

• random effect for rate γi1 has a log-Normal distribution
log(γi1) ∼ N(µθ1, σ

2
θ1);

• changepoint time τi1 has a truncated Normal distribution N[di−τ∗,di](di−
µτ1, σ

2
τ1); where τ ∗ is the fixed time when the disease begins to show up.

This information comes from pre-clinical studies. For HCC it is assumed
to be 2 years;

• binary indicators Ii1 follows a Bernoulli distribution with parameter
πi1 = exp(µI)/ {1 + exp(µI)}. This is a reduced case of Markov
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Random Field, the joint distribution of Iik among multiple biomarkers
(paragraphh 4.2.1).

Posterior Risk

The biomarker level has to be evaluated in order to decide whether it is linked
to diseased patients or not. Given the posterior risk of disease defined as

P (Di = 1|Yij1)
P (Di = 0|Yij1)

=
P (Yij1|Di = 1) · P (Di = 1)

P (Yij1|Di = 0) · (1− P (Di = 1))

where Di is the disease status of the patient, and Yij the biomarker level.
The decision rule is based on the posterior risk of disease related to the

current screening value compared to all the available screening values from
previous studies.

4.1.3 Independent Fully Bayesian

The most recent model is an extension of Skates to multiple correlated
longitudinal biomarkers. For a multiple biomarkers fully Bayesian screening
test (mFB) a joint model is computed: single trajectories may or may not
exhibit changes at the cancer onset and they have not the same changepoint
time in function of the occurrences. However, in this method the similarity
between changepoints with respect to the cancer onset is assumed.

Method

The method is the same as in Skates but with an additional index K in order
to indicate different biomarkers.

Let Yijk be the biomarker level, where i indicates patient, j indicates
screening time related to tij indicates visit time measured in years from the
entry date, and k indicates the biomarker. Disease status is denoted by D
and it assumes 2 values:

Di = 0 when patient is disease-free at time di therefore the marker level
varies randomly around mean θik following the model

Yijk = θik + εijk
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with Normal distributed errors;
whileDi = 1 when patient is diseased at time di. Iik is defined to distinguish

between 2 cases when Di = 1. If Iik = 0 the marker level trajectory does not
change after disease onset so it varies as randomly as for control patients; while
if Iik = 1 the marker level fluctuates randomly around a constant mean θik
until the disease onset at time τik, whence the marker level is added of a linear
rate γik as the time increases from the changepoint following the model

Yijk = θik + γik(tij − τik) + εijk

.
Therefore the assumption is that the marker level linearly increases after the

disease onset. Appropriate transformations are made to adjust the decreasing
trajectories after the disease onset.

The algorithm is efficient because it can accommodate inconstant visits
of patients that do not follow recommended surveillance and produce missing
data.

This is a more efficient strategy of screening for early detection of low-
incidence diseases than Skates strategy, still based on biomarkers. Multiple
biomarkers screening is essential in order to produce high sensitivity test. The
risk of HCC for future patients is not taken into account. The longitudinal
trajectory of biomarkers is the main interest [Tayob et al., 2018].

Priors

Since the model is hierarchical then parameters are referred to 2 levels:
patients and biomarkers. Patient level parameters allow to personalize the
threshold for the risk computation.

Subject-specific parameters

• Biomarker level average θik has a Normal distribution N(µθk, σ
2
θk);

• random effect for rate γik has a log-Normal distribution
log(γik) ∼ N(µθk, σ

2
θk);

• changepoint time τik has a truncated Normal distribution
N[di−τ∗,di](di − µτk, σ

2
τk); where di is the exit time and τ ∗ is the fixed
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time when the disease begins to show up. This information comes from
pre-clinical studies. For HCC it is fixed to 2 years.

• binary indicators Ii = (Ii1, ..., Iik) follows a Markov Random Field (MFR)
distribution

P (Ii) ∝ exp

{
µI

(
K∑
k=1

Iik

)
+ ηI(I

T
i RIi)

}

where R is a upper triangular matrix that provides the correlation
between changepoints, µI controls the sparsity of the model, ηI controls
the smoothness of the ditribution of Ii, therefore it controls the
changepoints dependency. Changepoints are assumed to be correlated
to each other, then the probability of observing a changepoint in the
k-th marker of the i-th patient depends on the discovered changepoints
in the (k-1)-ths previous markers. The conditional distribution of Ii
results

P (Iik|(Iik′ : k′ 6= k)) =
exp {IikF (Iik)}

1 + exp {F (Iik)}
where F (Iik) = µI + ηI

∑
k′ 6=k

Iik′ ;

• logit(µI) has a Beta prior;

• ηI has a Beta prior.

Biomarker-specific parameters

• Variance 1/σ2
k of each k biomarker has a uninformative Jeffreys’ prior;

• Means µθk, µγk, µτk have Normal priors;

• Variances σ2
θk, σ

2
γk, σ

2
τk have Inverse Gamma priors.

Posterior Risk

The posterior joint model for all the parameters is not available in closed
form, then a MCMC algorithm is computed to sample from the posterior
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distributions. The full conditional of the biomarker-specific parameters are
easily computable and a Gibbs sampler step is used, except for parameters
related to the changepoint (µτk, σ2

τk) and except for MFR parameters
(µI , ηI). Therefore, a Metropolis-Hastings is implemented for them.

A Gibbs sampler is used to sample from the full conditional (FC) of the
subject-specific parameter θik as well.

The posterior distributions of subject-specific parameters Iik, γik, τik are
connected and they are computed as follows: if Iik = 0 there is only θik
distribution; if Iik = 1 there are all parameters distributions. Therefore, the
space of parameter depends on the value of Iik and a reversible-jump step
(section 4.2.3) is used to sample from the FC of all the subject-specific
parameters.

The decision of the disease status of a (N+1)th patient at time tij is
based on his posterior risk of disease, given the longitudinal trajectory of
each biomarker until time tij.

The posterior risk is computed as follows

P (DN+1 = 1|YN+1)

P (DN+1 = 0|YN+1)
=
P (YN+1|DN+1 = 1)

P (YN+1)|DN+1 = 0
· P (DN+1 = 1)

1− P (DN+1 = 1)

where YN+1 = {YN+1j′k, j
′ = 1, ..., j and k = 1, ..., K}

Prior prevalence of disease P (DN+1 = 1) can be estimated from previous
surveillance on target population or from training data.

Conditional probabilities P (YN+1|DN+1 = 1) and P (YN+1|DN+1 = 0) are
estimated through predictive distributions based on N patients biomarkers
levels from training data. A Monte Carlo integration is used for this
computation step.

If posterior risk exceeds a fixed threshold, patient has enough evidence to
be a HCC case than to be a control. That means that the result of screening
is positive and it is used with additional tests (CT, MRI) to ensure predicting
the correct HCC disease status. Threshold depends on clinical context: in this
case it is fixed to maintain low the false positive rate (FPR) in order to reduce
costs and unnecessary anxiety.
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Assessments

The accuracy of screening is given by sensitivity and specificity. Those concepts
are extended to:

• patient-level sensitivity defined as the proportion of cases with at least
one positive test during all the screening time;

• screening-level specificity defined as the proportion of negative tests out
of all the tests undertaken on the control group.

4.2 Multiple Trajectories With Covariates

The model described in this section is an innovative extension of the fully
Bayesian hierarchical joint model (mFB) outlined in Tayob et al. [2018]. The
extension consists of the inclusion of baseline covariates to the model on
multiple biomarkers trajectories. The model is hierarchical because of the 2
levels defined: the subject-specific level and the biomarker-specific level.
Biomarkers changepoints are assumed to be correlated to each other.
Biomarker level is assumed to vary randomly around a mean value until the
disease onset, whence it may or may not change over time. It is assumed that
an increase in biomarker level is signal of a latent disease.

Let Yijk be the k − th biomarker level in the i − th patient the j − th
screening time. Moreover, let Xil be the l− th covariate for the i− th patient,
and βkl be the regression coefficient associated with the l− th covariate Xl for
the k − th biomarker. All other parameters are defined in the same way as in
Tayob et al. [2018] (section 4.1.3) .

The disease status is denoted by D and can assume 2 values for the i− th
patient:

• Di = 0 when the patient is disease-free at time di and the biomarker
level varies randomly around average θik + βklXil. The complete model
is

Yijk = θik + βklXil + εijk

whit Normal distributed errors.
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• Di = 1 when the patient is diseased at time di. Iik indicates the existence
of a changepoint and is defined to distinguish between 2 sub-cases. If
Iik = 0 the biomarker level trajectory does not change after disease onset
therefore it fluctuates around its mean as randomly as in control patients.
On the other side, if Iik = 1 the marker level fluctuates randomly around
a constant mean θik + βklXil until the disease onset at time τik, whence
the biomarker level is added of a linear rate γik as the time increases
from the changepoint, following the model

Yijk = θik + βklXil + γik(tij − τik)+ + εijk

with Normal distributed errors. ()+ is the positive part of the expression.

It is made an assumption on the biomarker level linear increase after the
disease onset. Appropriate transformations are made to adjust the decreasing
trajectories after the disease onset [Tayob et al., 2018].

The separation between cases and controls allows to identify better
changepoints and rate of change. The complete models are specified as

Yijk|tij, {Ii = 1} ∝ N(θik + βklXil + γik(tij − τik)+, σ2
k)

Yijk|tij, {Ii = 0} ∝ N(θik + βklXil, σ
2
k)

Without loss of generality, let i = 1, . . . , n0 be the index for controls in the
study and let i = n0 + 1, . . . , N be the index for case patients. The likelihood
under the assumed model is

L(Y; t, ·) =

n0∏
i=1

K∏
k=1

Ji∏
j=1

φ

(
Yijk − θik − βklXil

σk

)

×
N∏

i=n0+1

K∏
k=1

Ji∏
j=1

φ

(
Yijk − θik − βklXil

σk

)1−Iik

φ

(
Yij′k − θik − βklXil − γik(tij − τik)+

σk

)Iik
,

where Y = {Yijk, i = 1, . . . , N , j = 1, . . . , Ji and k = 1, . . . , K}, t = {tij, i =
1, . . . , N and j = 1, . . . , Ji} and φ is the standard Normal probability density
function [Tayob et al., 2018].
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4.2.1 Priors

Model parameters are either subject-specific or biomarker-specific, because of
the hierarchical nature of the model. Subject-specific level allows the risk
computation to be personalized with respect to the patient clinical past
history. The difference in sensitivity between this new approach and the fixed
cut-off approach can be appreciate in Chapter 5. Priors are listed in the next
paragraphs.

Subject-specific parameters

• Mean biomarker level θik has a Normal distribution N(µθk, σ
2
θk);

• random effect for rate γik has a log-Normal distribution
log(γik) ∼ N(µθk, σ

2
θk);

• changepoint time τik has a truncated Normal distribution
N[di−τ∗,di](di−µτk, σ2

τk); where τ ∗ is the fixed time when the disease begins
to show up. This information comes from pre-clinical studies. For HCC
is 2 years.

• binary indicators Ii = (Ii1, ..., Iik) follows a Markov Random Field
distribution (MFR)

P (Ii) ∝ exp

{
µI

(
K∑
k=1

Iik

)
+ ηI(I

T
i RIi)

}

All the elements of this distribution are outlined in Section 4.1.3. We just
remind that changepoints are assumed to be correlated each other, then
the probability of observing a changepoint in the k − th marker of the
i− th patient depends on the discovered changepoints in the (k− 1)− th
previous markers. The conditional distribution of Ii is computed:

P (Iik|(Iik′ : k′ 6= k)) =
exp {IikF (Iik)}

1 + exp {F (Iik)}
where F (Iik) = µI + ηI

∑
k′ 6=k

Iik′ ;

• logit(µI) has a Beta prior;
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• ηI has a Beta prior.

Biomarker-specific parameters

• Variance 1/σ2
k of each k − th biomarker has a uninformative Jeffreys’

prior;

• means µθk, µγk, µτk have Normal priors;

• variances σ2
θk, σ

2
γk, σ

2
τk have Inverse Gamma priors;

• βkl is Normally distributed N(β0, Cσ
2
βk

); where σ2
βk

is distributed as an
Inverse Gamma IG(a, b), where a and b are fixed values and C is a matrix
C = cI, where I is the identity matrix.1 It is assumed that baseline
covariates are fixed over time and have the same effect for control and
case patients.

It is difficult to understand the joint behaviour of all the subject-specific
parameters, therefore Ii is the only parameter considered jointly among the
biomarkers.

4.2.2 Markov Chain Monte Carlo

The posterior joint model for all parameters is not available in closed form, then
a MCMC algorithm is computed to sample from the posterior distributions.
The full conditional distributions (FC) of the biomarker-specific parameters
are easily computable and a Gibbs sampler step is used, except for parameters
related to the changepoint (µτk, σ

2
τk) and for MFR parameters (µI , ηI). The

updating of these parameters is via a Metropolis-Hastings algorithm.
A Gibbs sampler is used to sample from the full conditional of the subject-

specific parameter θik as well. All Gibbs steps are fairly standards and are
detailed in Section 4.4.2.

While, the posterior distributions of subject-specific parameters
Iik, γik, τik are connected and are computed as follows: if Iik = 0 there is
only θik distribution; if Iik = 1 there are all the parameters distributions.
Therefore, the parameters space depends on the value of Iik and a
reversible-jump step is used to sample from the full conditionals of all the
subject-specific parameters.

1We also tried the g-prior such as C = cX ′X but with poor results.
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4.2.3 Reversible jump step

There are many cases where parameters space varies in his dimension,
instead of fixing parameters at the beginning of the model specification. The
reversible Markov chain samplers method [Skates et al., 2001] [Green, 1995] is
an extension of the Metropolis-Hastings algorithm and allows to jump
between parameters sub-spaces of different dimensions in a way that
varying-dimension problems are solved.

Posteriors of random effect parameters (θi, γi) are straightforward because
they are sampled from singular full conditionals. It is not the same for
changepoint parameter τi, indeed a Metropolis-Hastings is used to
approximate its posterior density. A reversible-jump is used in order to
sample from the full conditional of Ii since its value implies different
dimensions of the parameters space. The starting point is Ii = 0 for subject i.
To propose a move to Ii = 1 the first thing is expanding the parameters
space from θi to (θi, γi, τi). The steps to compute are the following:

• a candidate γ∗ is generated from its prior log(γi) ∝ N(µγ, dγ);

• a candidate τ ∗ is generated from its prior τi ∝ N(di − a2τ )I[di − bτ , di],
where aτ and bτ are previously fixed;

• new parameters of the expanded space are θ∗ = θi, γ∗, τ ∗;

• the acceptance probability of the proposal move from Ii = 0 to Ii = 1
is: min {likelihood ratio× prior ratio× proposal ratio× Jacobian, 1}.
Likelihood and prior ratios are evaluated at the values (θi, γi, τi) under
the model Ii = 1 over the value (θi) under the model Ii = 0; proposal
ratio is the proposal density for moving from Ii = 1 to Ii = 0 over the
proposal density for moving from Ii = 0 to Ii = 1 (in this case is 1
divided by the prior densities for γi and τi evaluated in γ∗i and τ ∗i ). It is
also included the Jacobian of transformation from the current
parameter space augmented by new parameters (θi, γ

∗
i , τ

∗
i ) to the new

parameters space (θ∗i , γ
∗
i , τ

∗
i ) (in this case the Jacobian=1 because

θi = θ∗i ). Therefore, the current acceptance probability coincides with
the Metropolis-Hastings acceptance probability.
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4.2.4 Computational Algorithm

The algorithm is explained step by step in this section.

Algorithm

Step 0: Initialize parameters:

1. θ
(0)
k = {θ(0)ik , i = 1, . . . , N}, k = 1, . . . , K

2. µ(0)
θk , k = 1, . . . , K

3. σ2(0)
θk , k = 1, . . . , K

4. σ2(0)
k , k = 1, . . . , K

5. I
(0)
k = {I(0)ik , i = n0 + 1, . . . , N}, k = 1, . . . , K

6. µ(0)
I

7. η(0)I

8. γ
(0)
k = {γ(0)ik , i = n0 + 1, . . . , N : Iik = 1}, k = 1, . . . , K

9. µγk, k = 1, . . . , K

10. σ2
γk, k = 1, . . . , K

11. τ
(0)
k = {τ (0)ik , i = n0 + 1, . . . , N : Iik = 1}, k = 1, . . . , K

12. β(0)
kl , k = 1, . . . , K and l = 1, . . . , L

13. σ(0)
βk

, k = 1, . . . , K

Step 1-S: Update parameters for s ∈ {1, . . . , S} and s∗ = 1 + 3(s− 1).

1. Update µθk, k = 1, . . . , K: Sample µ
(s)
θk from N(µ0k∗ , σ

2
0k∗), where

µ0k∗ =
σ
2(s−1)
θk

σ
2(s−1)
θk +Nσ2

0k

µ0k +
σ2
0k

σ
2(s−1)
θk +Nσ2

0k

∑N
i=1 θ

(s−1)
ik and

σ2
0k∗ =

σ
2(s−1)
θk σ2

0k

σ
2(s−1)
θk +Nσ2

0k

.
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2. Update σ2
θk, k = 1, . . . , K: Sample σ2(s)

θk from IG(aθ∗k , bθ∗k), where aθ∗k =

aθk +N/2 and bθ∗k = bθk +
1

2

∑N
i=1(θ

(s−1)
ik − µ(s)

θk )2.

3. Update σ2
k, k = 1, . . . , K: Sample σ

2(s)
k from IG(aσk , bσk), where

aσk =
1

2

∑N
i=1 Ji, bσk =

1

2

∑N
i=1

∑Ji
j=1(Yijk − θ∗ijk − βklXil)

2 and
θ∗ijk ={
θ
(s−1)
ik if Di = 0 or (Di = 1 and I(s

∗−1)
ik = 0)

θ
(s−1)
ik + γ

(s∗−1)
ik (tij − τ (s

∗−1)
ik )+ if Di = 1 and I(s

∗−1)
ik = 1

4. Update µI :

(a) Generate µ∗I from its proposal distribution
JµI (µI |µ

(s−1)
I ) = N(µ

(s−1)
I , δ2µI ).

(b) Compute acceptance ratio

log(r) = min

[
log

{
P (I(s

∗−1)|µ∗I , η
(s−1)
I )P (µ∗I |p1, p2)

P (I(s∗−1)|µ(s−1)
I , η

(s−1)
I )P (µ

(s−1)
I |p1, p2)

}
, 0

]
= min[log{P (I(s

∗−1)|µ∗I , η
(s−1)
I )}+ log{P (µ∗I |p1, p2)}

− log{P (I(s
∗−1)|µ(s−1)

I , η
(s−1)
I )}

− log{P (µ
(s−1)
I |p1, p2)}, 0]
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where P (I|µI , ηI) =
n∏

i=n0+1

exp

{
µI

(
K∑
k=1

Iik

)

+ηI

K−1∑
k=1

K∑
k′=k+1

IikIik′

)
× c

and c−1 =
∑
Ĩ∈I

exp

{
µI

(
K∑
k=1

Ĩk

)
+ ηI

(
K−1∑
k=1

K∑
k′=k+1

ĨkĨk′

)}
for I = All possible combinations of vector Ĩ with binary Ĩk

and P (µI |p1, p2) = PBeta

{
exp(µI)

1 + exp(µI)

∣∣∣∣ p1, p2} ∣∣∣∣ ddµI exp(µI)

1 + exp(µI)

∣∣∣∣
= PBeta

{
exp(µI)

1 + exp(µI)

∣∣∣∣ p1, p2} exp(µI)

{1 + exp(µI)}2

(c) Generate u ∼ Uniform(0, 1). If log(u) < log(r) set µ(s)
I = µ∗I ;

otherwise set µ(s)
I = µ

(s−1)
I

5. Update ηI :

(a) Generate η∗I from its proposal distribution
JηI (ηI |η

(s−1)
I ) = Beta(ã, b̃), where ã and b̃ are chosen so that the

mean and variance of the Beta distribution are η
(s−1)
I and δ2ηI

respectively.

(b) Compute acceptance ratio

log(r) = min

[
log

{
P (I(s

∗−1)|µ(s)
I , η∗I )P (η∗I |p3, p4)

P (I(s∗−1)|µ(s)
I , η

(s−1)
I )P (η

(s−1)
I |p3, p4)

·

JηI (η
(s−1)
I |η∗I )

JηI (η
∗
I |η

(s−1)
I )

}
, 0

]
= min[log{P (I(s

∗−1)|µ(s)
I , η∗I )}+ log{P (η∗I |p3, p4)}

− log{P (I(s
∗−1)|µ(s)

I , η
(s−1)
I )} − log{P (η

(s−1)
I |p3, p4)}

+ log{JηI (η
(s−1)
I |η∗I )} − log{JηI (η∗I |η

(s−1)
I )}, 0]

(c) Generate u ∼ Uniform(0, 1). If log(u) < log(r) set η(s)I = η∗I ;
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otherwise set η(s)I = η
(s−1)
I

6. Update µγk, k = 1, . . . , K: Sample µ
(s)
γk from N(µ1k∗ , σ

2
1k∗), where

µ1k∗ =
σ
2(s−1)
γk

σ
2(s−1)
γk + nIkσ2

1k

µ1k +
σ2
1k

σ
2(s−1)
γk + nIkσ2

1k

∑nIk
i=1 log(γ

(s∗−1)
ik ),

σ2
1k∗ =

σ
2(s−1)
γk σ2

1k

σ
2(s−1)
γk + nIkσ2

1k

and nIk =
∑N

i=n0+1 I
(s∗−1)
ik .

7. Update σ2
γk, k = 1, . . . , K: Sample σ

2(s)
γk from IG(aγ∗k , bγ∗k), where

aγ∗k = aγk + nIk/2, bγ∗k = bγk +
1

2

∑nIk
i=1{log(γ

(s∗−1)
ik ) − µ

(s)
γk}2 and

nIk =
∑N

i=n0+1 I
(s∗−1)
ik .

8. Update µτk, k = 1, . . . , K:

(a) Generate µ∗τk from its proposal distribution
Jµτk(µτk|µ

(s−1)
τk ) = N(µ

(s−1)
τk , δ2µτk).

(b) Compute acceptance ratio

log(r) = min

[
log

{
P (τ

(s∗−1)
k |µ∗τk, σ

2(s−1)
τk )P (µ∗τk|µ2k, σ

2
2k)

P (τ
(s∗−1)
k |µ(s−1)

τk , σ
2(s−1)
τk )P (µ

(s−1)
τk |µ2k, σ2

2k)

}
, 0

]
= min[log{P (τ

(s∗−1)
k |µ∗τk, σ

2(s−1)
τk )}+ log{P (µ∗τk|µ2k, σ

2
2k)}

− log{P (τ
(s∗−1)
k |µ(s−1)

τk , σ
2(s−1)
τk )} − log{P (µ

(s−1)
τk |µ2k, σ

2
2k)}, 0]

(c) Generate u ∼ Uniform(0, 1). If log(u) < log(r) set µ(s)
τk = µ∗τk;

otherwise set µ(s)
τk = µ

(s−1)
τk

9. Update σ2
τk, k = 1, . . . , K:

(a) Generate σ2∗
τk from its proposal distribution

Jσ2
τk

(σ2
τk|σ

2(s−1)
τk ) = TN[0,∞](σ

2(s−1)
τk , δ2στk).
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(b) Compute acceptance ratio

log(r) = min

[
log

{
P (τ

(s∗−1)
k |µ(s)

τk , σ
2∗
τk)P (σ2∗

τk|aτk, bτk)
P (τ

(s∗−1)
k |µ(s)

τk , σ
2(s−1)
τk )P (σ

2(s−1)
τk |aτk, bτk)

·

Jσ2
τk

(σ
2(s−1)
τk |σ2∗

τk)

Jσ2
τk

(σ2∗
τk|σ

2(s−1)
τk )

}
, 0

]
= min[log{P (τ

(s∗−1)
k |µ(s)

τk , σ
2∗
τk)}+ log{P (σ2∗

τk|aτk, bτk)}
− log{P (τ

(s∗−1)
k |µ(s)

τk , σ
2(s−1)
τk )} − log{P (σ

2(s−1)
τk |aτk, bτk)}

+ log{Jσ2
τk

(σ
2(s−1)
τk |σ2∗

τk)} − log{Jσ2
τk

(σ2∗
τk|σ

2(s−1)
τk )}, 0]

(c) Generate u ∼ Uniform(0, 1). If log(u) < log(r) set σ2(s)
τk = σ2∗

τk;
otherwise set σ2(s)

τk = σ
2(s−1)
τk

10. Update each θik, i = 1, . . . , N and k = 1, . . . , K:

• If Di = 0, sample θ
(s)
ik from N(µθk∗ , σ

2
θk∗), where

µθ∗k =
σ
2(s)
k

σ
2(s)
k + Jiσ

2(s)
θk

µ
(s)
θk +

σ
2(s)
θk

σ
2(s)
k + Jiσ

2(s)
θk

×
∑Ji

j=1(Yijk − βklXil) and

σθ∗k =
σ
2(s)
k σ

2(s)
θk

σ
2(s)
k + Jiσ

2(s)
θk

.

• If Di = 1 and I
(s∗−1)
ik = 0, sample θ(s)ik from N(µθk∗ , σ

2
θk∗), where

µθ∗k =
σ
2(s)
k

σ
2(s)
k + Jiσ

2(s)
θk

µ
(s)
θk +

σ
2(s)
θk

σ
2(s)
k + Jiσ

2(s)
θk

∑Ji
j=1(Yijk − βklXil) and

σ2
θ∗k

=
σ
2(s)
k σ

2(s)
θk

σ
2(s)
k + Jiσ

2(s)
θk

.

• If Di = 1 and I
(s∗−1)
ik = 1, sample θ(s)ik from N(µθk∗ , σ

2
θk∗), where

µθ∗k =
σ
2(s)
k

σ
2(s)
k + Jiσ

2(s)
θk

µ
(s)
θk +

σ
2(s)
θk

σ
2(s)
k + Jiσ

2(s)
θk

∑Ji
j=1{Yijk − βklXil −

γ
(s∗−1)
ik (tij − τ (s

∗−1)
ik )+} and σ2

θ∗k
=

σ
2(s)
k σ

2(s)
θ

σ
2(s)
k + Jiσ

2(s)
θ

.

11. Update I, γ and τ .
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(a) Update each Iik, i = n0 + 1, . . . , N and k = 1, . . . , K:
If I(s

∗−1)
ik = 0,

i. Generate γ∗ik from its prior log(γik) ∼ N(µ
(s)
γk , σ

2(s)
γk )

ii. Generate τ ∗ik from its prior τik ∼ TN[di−τ∗k ,di](di − µ
(s)
τk , σ

2(s)
τk )

iii. Compute acceptance ratio

log(r) = min

[
log

{
P (Yik|Iik = 1, θ

(s)
ik , σ

2(s)
k , γ∗ik, τ

∗
ik, β

(s)
kl )

P (Yik|Iik = 0, θ
(s)
ik , σ

2(s)
k ), β

(s)
kl

·

πik
1− πik

}
, 0

]
= min[log{P (Yik|Ii = 1, θ

(s)
ik , σ

2(s)
k , γ∗ik, τ

∗
ik), β

(s)
kl }

− log{P (Yik|Iik = 0, θ
(s)
ik , σ

2(s)
k ), β

(s)
kl }

+ log{πik} − log{1− πik}, 0]

whereπik =
exp

{
µ
(s)
I + η

(s)
I

(∑
k′<k I

(s∗)
ik′ +

∑
k′>k I

(s∗−1)
ik′

)}
1 + exp

{
µ
(s)
I + η

(s)
I

(∑
k′<k I

(s∗)
ik′ +

∑
k′>k I

(s∗−1)
ik′

)}
iv. Generate u ∼ Uniform(0, 1). If log(u) < log(r) set I(s

∗)
ik = 1,

γ
(s∗)
ik = γ∗ik, and τ

(s∗)
ik = τ ∗ik; otherwise set I(s

∗)
ik = 0.

If I(s
∗−1)

ik = 1,
i. Compute acceptance ratio

log(r) = min

[
log

{
P (Yik|Iik = 0, θ

(s)
ik , σ

2(s)
k , β

(s)
kl )

P (Yik|Iik = 1, θ
(s)
ik , σ

2(s)
k , γ

(s∗−1)
ik , τ

(s∗−1)
ik , β

(s)
kl )
·

1− πik
πik

}
, 0

]
= min[log{P (Yik|Iik = 0, θ

(s)
ik , σ

2(s)
k , β

(s)
kl )}

− log{P (Yik|Iik = 1, θ
(s)
ik , σ

2(s)
k , γ

(s∗−1)
ik , τ

(s∗−1)
ik , β

(s)
kl )}

+ log{1− πik} − log{πik}, 0]

where πik =
exp

{
µ
(s)
I + η

(s)
I

(∑
k′<k I

(s∗)
ik′ +

∑
k′>k I

(s∗−1)
ik′

)}
1 + exp

{
µ
(s)
I + η

(s)
I

(∑
k′<k I

(s∗)
ik′ +

∑
k′>k I

(s∗−1)
ik′

)}
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ii. Generate u ∼ Uniform(0, 1). If log(u) < log(r) set I(s
∗)

ik = 0,
otherwise set I(s

∗)
ik = 1, γ(s

∗)
ik = γ

(s∗−1)
ik , and τ (s

∗)
ik = τ

(s∗−1)
ik .

(b) Update each γik, i ∈ {i = n0 + 1, . . . , N : I
(s∗)
ik = 1} and k =

1, . . . , K:

i. Generate log(γ∗ik) from its proposal distribution
Jγik(γik|γ

(s∗)
ik ) = N(log(γ

(s∗)
ik ), δ2γk).

ii. Compute acceptance ratio

log(r) = min

[
log

{
P (Yik|I(s

∗)
ik = 1, θ

(s)
ik , σ

2(s)
k , γ∗ik, τ

(s∗)
ik , β

(s)
kl )

P (Yik|I(s
∗)

ik = 1, θ
(s)
ik , σ

2(s)
k , γ

(s∗)
ik , τ

(s∗)
ik , β

(s)
kl )
·

P (γ∗ik|µ
(s)
γk , σ

2(s)
γk )

P (γ
(s∗)
ik |µ

(s)
γk , σ

2(s)
γk )

Jγik(γ
(s∗)
ik |γ∗ik)

Jγik(γ
∗
ik|γ

(s∗)
ik )

}
, 0

]
= min[log{P (Yik|I(s

∗)
ik = 1, θ

(s)
ik , σ

2(s)
k , γ∗ik, τ

(s∗)
ik , β

(s)
kl )}

− log{P (Yik|I(s
∗)

ik = 1, θ
(s)
ik , σ

2(s)
k , γ

(s∗)
ik , τ

(s∗)
ik , β

(s)
kl )}

+ log{P (γ∗ik|µ
(s)
γk , σ

2(s)
γk )} − log{P (γ

(s∗)
ik |µ

(s)
γk , σ

2(s)
γk )}

+ log{Jγik(γ
(s∗)
ik |γ

∗
ik)} − log{Jγik(γ∗ik|γ

(s∗)
ik )}, 0]

iii. Generate u ∼ Uniform(0, 1). If log(u) < log(r) set γ(s
∗+1)

ik = γ∗ik,
I
(s∗+1)
ik = 1 and τ (s

∗+1)
ik = τ

(s∗+1)
ik ; otherwise set γ(s

∗+1)
ik = γ

(s∗)
ik ,

I
(s∗+1)
ik = 1 and τ (s

∗+1)
ik = τ

(s∗)
ik .

(c) Update each τik, i ∈ {i = n0 + 1, . . . , N : I
(s∗+1)
ik = 1} and k =

1, . . . , K

i. Generate τ ∗ik from its proposal distribution Jτik(τik|τ
(s∗+1)
ik ) =

TN[di−τ∗k ,di](τ
(s∗+1)
ik , δ2τk).
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ii. Compute acceptance ratio

log(r) = min

[
log

{
P (Yik|I(s

∗+1)
ik = 1, θ

(s)
ik , σ

2(s)
k , γ

(s∗+1)
ik , τ ∗ik, β

(s)
kl )

P (Yik|I(s
∗+1)

ik = 1, θ
(s)
ik , σ

2(s)
k , γ

(s∗+1)
ik , τ

(s∗+1)
ik , β

(s)
kl )
·

P (τ ∗ik|µ
(s)
τk , σ

2(s)
τk )

P (τ
(s∗+1)
ik |µ(s)

τk , σ
2(s)
τk )

Jτik(τ
(s∗+1)
ik |τ ∗ik)

Jτik(τ
∗
ik|τ

(s∗+1)
ik )

}
, 0

]
= min[log{P (Yik|I(s

∗+1)
ik = 1, θ

(s)
ik , σ

2(s)
k , γ

(s∗+1)
ik , τ ∗ik, β

(s)
kl )}

− log{P (Yik|I(s
∗+1)

ik = 1, θ
(s)
ik , σ

2(s)
k , γ

(s∗+1)
ik , τ

(s∗+1)
ik , β

(s)
kl )}

+ log{P (τ ∗ik|µ
(s)
τk , σ

2(s)
τk )} − log{P (τ

(s∗+1)
ik |µ(s)

τk , σ
2(s)
τk )}

+ log{Jτik(τ
(s∗+1)
ik |τ ∗ik)} − log{Jτik(τ ∗ik|τ

(s∗+1)
ik )}, 0]

iii. Generate u ∼ Uniform(0, 1). If log(u) < log(r) set τ (s
∗+2)

ik = τ ∗ik,
γ
(s∗+2)
ik = γ

(s∗+1)
ik and I(s

∗+2)
ik = 1; otherwise set τ (s

∗+2)
ik = τ

(s∗+1)
ik ,

γ
(s∗+2)
ik = γ

(s∗+1)
ik and I(s

∗+2)
ik = 1.

12. Update each βkl, k = 1, . . . , K number of biomarkers, l = 1, . . . , L
number of covariates. Sample βk from MN(µβk ,Σβk), where

µβk = (C−1/σ
2(s−1)
βk

+XTX/σ
2(s)
k )−1XTy∗/σ

2(s)
k

Σβk = (C−1/σ
2(s−1)
βk

+XTX/σ
2(s)
k )−1

with y∗ = Yijk − θ
(s)
ik − γ

(s∗)
ik (tij − τ

(s∗)
ik )+ if Di = 1 and I

(s∗)
ik = 1, and

y∗ = Yijk − θ(s)ik if Di = 0 or Di = 1 and I(s
∗)

ik = 0.

13. Update each σβk , k = 1, . . . , K. The full conditional is a Inverse-Gamma
distribution with parameters a + l∗/2 - where l∗ is the total number of
covariates - and b+ (β

(s)
k )TC−1β

(s)
k /2.

4.2.5 Posterior Risk of Disease

The decision of the disease status of a (N+1)th patient at time tij is based on
his posterior risk of disease, given the longitudinal trajectory of each biomarker
until time tij.
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The posterior risk is computed as

P (DN+1 = 1|YN+1)

P (DN+1 = 0|YN+1)
=
P (YN+1|DN+1 = 1)

P (YN+1|DN+1 = 0)
· P (DN+1 = 1)

1− P (DN+1 = 1)

where YN+1 = {YN+1j′k, j
′ = 1, ..., j and k = 1, ..., K}

Prior prevalence of disease P (DN+1 = 1) can be estimated from previous
surveillance on the target population, or from training data as it has been
done in the current work and in Tayob et al. [2018].

Conditional probabilities P (YN+1|DN+1 = 1) and P (YN+1|DN+1 = 0) are
estimated through predictive distributions based on N patients biomarkers
levels from training data.

A threshold is fixed to decide whether or not the patient is likely to be a
case. First, a 90% level of specificity is fixed (i.e. the 90% of negative tests
belong truly to disease-free patients), therefore the cut-off coincides with the
90% quantile - or for other values (specificity × 100)% quantile - of the
posterior risk distribution computed on disease-free patients from training
set. If posterior risk exceeds the fixed threshold, patient has enough evidence
to be a HCC case than to be a control. That means that the screening result
is positive and it is used with additional tests (CT, MRI) to ensure detecting
the correct HCC disease status. The threshold depends on clinical context: in
this case it is fixed in order to maintain low the false positive rate (FPR) in
order to reduce costs, complications and unnecessary anxiety [Tayob et al.,
2018].

4.2.6 Assessing accuracy

Accuracy of screening is given by sensitivity and specificity and by a graphical
representation through the ROC curve. The concepts are extended to:

• patient-level sensitivity defined as the proportion of cases with at least
one positive test during all the screening time;

• screening-level specificity defined as the proportion of negative tests out
of all the tests undertaken on the control group Tayob et al. [2018].
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Chapter 5

Results

This chapter shows the results from simulation studies and real data studies.
The aim of simulation studies is to explore the performance of the new
screening method under different scenarios of multiple biomarkers
trajectories. Once the new screening has been assessed as accurate, it is
applied to HALT-C Trial data.

5.1 Simulation studies

The aim of simulation studies is to compare the different screening methods to
evaluate their potential in improving early HCC detection. The comparison is
made on the evaluation of patient-level sensitivity corresponding to screening-
level specificity, in the receiver operating characteristic (ROC) curve.

Training and validation data have been simulated to represent the aspects
of the HALT-C trial data structure. Each group has 400 patients followed
longitudinally for up to 5 years. The screening visits at time tij have been
undertaken every 6 months, with variability due to the patients behaviour.
Indeed, the number of screening visits Ji differs among patients.

Biomarkers levels are simulated from the joint model of controls and cases,
with and without changepoint.

The covariate-adjusted model is then compared to the covariate-free model,
that coincides with the mFB approach [Tayob et al., 2018]. In the scenario with
non-informative covariates, the covariate-adjusted screening has a lower ROC
than mFB screening (section 5.1.3). On the contrary, the new method improves
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in detection than mFB when covariates assume much more importance.

5.1.1 Simulated data

The data that have been used in this section are an accurate simulation of
the HALT-C trial data. The number of patients is fixed to 400. The disease
status D is sampled from a Binomial distribution with probability 50/400 to
be a case, that is a similar proportion of the one from HALT-C trial data.
The time of the follow-up "d" is set maximum to 5 years and it is sampled for
a Uniform[0,5] distribution. The time of visits are simulated on the following
scheme: biomarkers are measured every 6 months, so the maximum number
of visits that a patient can undertake is 11 in 5 years. The 4400 measurement
times are sampled from a Normal distributionN ∼ (0.5, 0.12) and positioned in
a matrix 400 patients × 11 measurements time. It is assumed the hypothesis of
the human irregularity on having the visits, hence the variability of the visits is
introduced in the data generation. In the first visit the biomarker level is fixed
at 0. Each new visit has a time that indicates how much has passed since the
first visit, therefore it is computed as a cumulative sum of the past times until
that visit. The times of the visits after the exit time "d" are omitted because
there are not post-diagnosis biomarker measurements. For each patient we
know how many times they have been visited and the time intervals between
the measurements from the very first time (time 0) till the exit time (d). For
each patient a data-set is initialized in the following way:

1. "ID", status of disease "D" and exit time "d" are repeated for the number
of visits undertaken;

2. cumulative time of the visits "t" are added to the dataset as a column;

3. total number of visits "J" are repeated for the number of visits
undertaken;

4. a vector that counts the visits time after time "obs_number" is
generated.

An example is shown in the table below.

44



CHAPTER 5. RESULTS 5.1. SIMULATION STUDIES

ID D d t J obs_number
351 0 2.483426 0.0000000 6 1
351 0 2.483426 0.3125795 6 2
351 0 2.483426 0.7785136 6 3
351 0 2.483426 1.2146442 6 4
351 0 2.483426 1.8363486 6 5
351 0 2.483426 2.3773203 6 6

Values for µI and ηI are set to a similar value from the HALT-C trial data-set
and changepoints for the 3 biomarkers "I" are sampled, only for cases, from a
Binomial distribution with a probability of being 1 that is the presence of a
changepoint. Since the model is joint, the probability of changepoint changes.

Given cinv = 1 + 3exp(µI) + 3exp(2µI + ηI) + exp(3µI + 3ηI)

• P (I1 = 1) =
(exp(µI) + 2exp(2µI + ηI) + exp(3µI + 3ηI))

cinv

• P (I2 = 1|I1) =
(exp(µI ∗ (I1 + 1) + ηI ∗ I1) + exp(µI ∗ (I1 + 2) + etaI ∗ (2 ∗ I1 + 1)))

cinv
P (I1 = 1)I1 + (1− P (I1 = 1))(1− I1)

• P (I3 = 1|I1, I2) =
exp(µI + ηI ∗ (I1 + I2))

1 + exp(µI + ηI ∗ (I1 + I2))

Values for parameters used to simulate the data are set to values in the
way to the best of reproducing Halt-C trial data-set. Values for
σ2
k, δσ2

k
, µθk , σθk , µγk , σγk , µτk , στk are taken from the paper of Tayob et al.

[2018]. Values of the intercept θk are sample from a Normal distribution.
Values of the linear rate γk are sampled, only for cases, from a Normal
distribution and then they are raised to the exponential. Values of the
changepoint time τk are sampled, only for cases, from a truncated Normal
distribution.

Covariates are set to 2 and are randomly sampled from a Normal standard
distributionN(0, 12). All β parameters are equal with respect to the biomarkers
and assume values in the interval [0, 2], depending on the simulation.

Mean and variance of biomarker level are computed via the formulas: Ȳk =
θk +βX + γk(t− τk)(+), sd(Yk) = σ2

k + δσ2
k
(t− τk)(+). Biomarker level coincides

with its mean added by an uncertainty factor Yk = Ȳk +N(0, sd(Yk)).
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Two times data are generated to obtain training dataset and validation
dataset to assess the accuracy of the screening test.

5.1.2 Hyperparameter setting and sensitivity

In this section sensitivity of posterior inference on the novel parameters β is
explored in comparison to results in Tayob et al. [2018]. All the other
parameters are set to the values suggested by Tayob et al. [2018].

In the covariate-adjusted method C = c(X ′X)−1 or C = cI. Therefore,
the value of c can be chosen to derive the best results in terms of posterior
distribution of β and sensitivity. Four different cases have been computed in
the way of choosing the best one.

Results with C = c(X ′X)−1, c = 0.1 or C = c(X ′X)−1, c = 0.01 are the
worst because β covariance matrix has too small values, therefore this case
can not represent well the true reality of the data. So c=1 is chosen. One of
the 2 alternatives C = I or C = (X ′X)−1 has to be chosen. They are therfore
compared.

Scenario with β = 2 is used for generating data and comparing the 2 values
of C. 2 MCMC of 10000 iterations have been computed. The aim is to assess
whether the posterior distribution of β can capture the true value, that in this
case is 2. Results with C = c(X ′X)−1, c = 1 show that all the β parameters
fluctuate around 0, so this prior is not suitable to represent the real value of
parameter. Moreover, the sensitivity is 67.35% with a specificity fixed to 90%.

On the other hand, C = cI, c = 1 is fixed, and β parameters seem to be
able to well represent the true value 2. A graphical check is shown in figure 5.1
where it is shown that β fluctuate around 2. Summaries of each β are collected
in the table below. Sensitivity computed on 1 repetition results equal to 71.73
%.

β Min. 1st Qu. Median Mean 3rd Qu. Max.
β1,1 1.878 1.996 2.029 2.030 2.063 2.184
β2,1 1.770 1.910 1.944 1.943 1.976 2.139
β1,2 1.878 2.007 2.045 2.045 2.084 2.249
β2,2 1.813 1.948 1.990 1.988 2.025 2.163
β1,3 1.896 2.012 2.046 2.046 2.079 2.201
β2,3 1.716 1.878 1.913 1.913 1.945 2.085
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Figure 5.1: Posterior Beta vs Prior Beta
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For the covariates-adjusted method matrix C = I has been chosen to generate
β covariance matrix.

3 scenarios are analyzed, whose results are reported in the next section. The
scenarios consist in generating the biomarkers levels with 3 different values of
β:

• β = 0

• β = 1

• β = 2
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5.1.3 Repeated Simulations

For each scenario 10 simulated data-sets are analyzed. For each analysis we run
2 MCMC chains of 10000 iterations. Chains dimension is chosen with respect
not to fall in lack of convergence. Some summary statistics or explanatory plots
have been computed to assess the model fitting. Then, in the detection phase,
the risk of disease has been computed on the 400 patients with respect to the
updated data.

Model Fitting

Model fitting is assessed for the new method. Graphical comparisons between
prior distribution and the posterior distribution of β parameters are reported
for the first repetition, just as an example. Moreover, a graphical
representation of biomarkers trajectories for 1 case patient and 1 control
patient is included: real biomarkers levels are compared to predicted
biomarkers level. The predicted biomarker level is computationally obtained
in the following way:

• Control patients:

1. the biomarker level is generated Y = θ + βX;

2. step (1.) is repeated for all the 10000 iterations;

3. a mean is computed.

• Case patients:

1. the time of the visit "t" is fixed;

2. the biomarker level is generated Y = θ + βX + γ(t− τ)(+);

3. step (1.) is repeated for all the 10000 iterations;

4. a mean is computed;

5. the process (1.)-(4.) is repeated for all the visits times "t".

On all the 10 repetitions random samples have been obtained for: the
parameters posterior mean and the parameters Gelman-Rubin statistics R̂.
In this last phase Frequentist approach is applied to the results from
Bayesian method applied in the current work.
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Frequentist and Bayesian encounter in order to assure the convergence of
chains and the accuracy of the obtained results.

True value β = 0

Plot of comparison between priors and posteriors of all the 6 β parameters is
reported in figure 5.2. As it can be noted in the plots, all β are centred on
their real value fixed in the generated data. Summaries of β parameters are
reported in the table below.

Min. 1st Qu. Median Mean 3rd Qu. Max.
β1,1 -0.133531 -0.003501 0.026977 0.029481 0.062053 0.193835
β2,1 -0.20202 -0.08925 -0.05546 -0.05567 -0.02314 0.08397
β1,2 -0.14568 0.00872 0.04842 0.04848 0.09136 0.23664
β2,2 -0.208258 -0.043984 -0.003668 -0.005011 0.031397 0.228276
β1,3 -0.14005 0.01535 0.04984 0.05108 0.08458 0.21568
β2,3 -0.26356 -0.11583 -0.08075 -0.08205 -0.04966 0.06599

All of the parameters fluctuate around the their real value 0.
Plot of actual fitting of the model on real data, especially on a control

patient, is reported in figure 5.3. Plots represent the predicted level of the 3
biomarkers and the real measurements at each visit for the control patient with
ID=20. The same is done for one case patient. On the biomarkers trajectories
a changepoint can be noticed. The plots are in figure 5.4. Real biomarkers
level are represented by dots, while black line represents the predicted level
and black dashed lines represent the 95% confidence interval. Red dashed line
represents the level the biomarker would have had without the changepoint (it
is made in order to appreciate the changepoint). Indeed, it is shown that the
changepoint is caught in the first and in the third biomarker trajectory.
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Figure 5.2: Prior vs Posterior
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Figure 5.3: Control fitting
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Figure 5.4: Case fitting
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Within 10 repetitions for each parameter, parameters mean of the means
have been collected and are compared with their true value, in the table below.
Gelman-Rubin statistics stays under 1.02 in mean between repetitions for all
the parameters. It can be concluded that there is not evidence for lack of
convergence. Moreover, the mean value is close to the real value with whom
each parameter has been generated.

Par. True v. Mean R̂
µθ1 2.43 2.4156 1.0009
µθ2 3.10 3.0959 1.0005
µθ3 2.75 2.6723 0.9999
σ2
θ1

0.79 0.8169 0.9998
σ2
θ2

0.80 0.8770 1.0001
σ2
θ3

0.79 0.7356 0.9996
σ2
1 0.23 0.2416 0.9998
σ2
2 1.35 1.3748 1.0011
σ2
3 0.80 0.8178 1.0004
µI 0.15 0.3980 1.0011
ηI 0.1 0.1005 1.0023
µγ1 1.87 2.3848 1.0290
µγ2 1.92 1.9511 1.0267

Par. True v. Mean R̂
µγ3 1.00 1.9462 1.0278
σ2
γ1

1.61 0.3892 1.0263
σ2
γ2

0.05 0.0293 1.0055
σ2
γ3

0.20 0.0444 1.0078
µτ1 1.05 0.5366 1.0156
µτ2 0.56 0.6260 1.0073
µτ3 0.75 0.3972 1.0033
σ2
τ1

0.82 0.6231 1.0035
σ2
τ2

0.58 0.6227 1.0021
σ2
τ3

0.70 0.5627 1.0004
σ2
β1

- 0.5067 1.0002
σ2
β2

- 0.5063 0.9997
σ2
β3

- 0.5003 0.9995

True value β = 1

The plot of comparison between priors and posteriors of all the 6 β is reported
in figure 5.5. As it can be noticed in plots, all β are centred on their real
value from the generated data while the prior in red is totally uninformative.
Summaries of β parameters are reported as well in the table below. All the
parameters fluctuate around their real value 1.

Min. 1st Qu. Median Mean 3rd Qu. Max.
β1,1 0.8839 0.9959 1.0267 1.0275 1.0577 1.2041
β2,1 0.7370 0.9085 0.9412 0.9408 0.9749 1.0894
β1,2 0.842 1.008 1.048 1.047 1.087 1.233
β2,2 0.8237 0.9485 0.9882 0.9878 1.0288 1.1872
β1,3 0.9045 1.0094 1.0418 1.0441 1.0801 1.2622
β2,3 0.7420 0.8786 0.9126 0.9129 0.9469 1.1028
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Figure 5.5: Prior vs Posterior
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The plot of the actual fitting of the model on real data for a control patient,
is reported in figure 5.6. Plots represent the predicted level of the 3 biomarkers
(red line) and the real measurements at each visit (dots) for the control patient
number 20.

Figure 5.6: Fitting of the model on a control patient
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The same is done for a case patient. On the biomarkers trajectories a
changepoint can be seen. The plots are in figure 5.7. Within 10 repetitions for

Figure 5.7: Fitting of the model on a case patient

each parameter, parameters mean of the means have been collected and are
compared with their true value, in the table below. Gelman-Rubin statistic
stays under 1.04 in mean between repetitions for all the parameters. It can
be concluded that there is not evidence for lack of convergence. Moreover,
the mean values are close to the real values with whome the parameters have
been generated.
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Par. True v. Mean R̂
µθ1 2.43 2.4168 0.9999
µθ2 3.10 3.0958 0.9996
µθ3 2.75 2.6722 1
σ2
θ1

0.79 0.8161 0.9999
σ2
θ2

0.80 0.8767 0.9994
σ2
θ3

0.79 0.7347 0.9998
σ2
1 0.23 0.2417 1.0005
σ2
2 1.35 1.3731 1.0014
σ2
3 0.80 0.818 0.9996
µI 0.15 0.4049 1.0016
ηI 0.1 0.0989 1.0038
µγ1 1.87 2.3985 1.0326
µγ2 1.92 1.9587 1.0229

Par. True v. Mean R̂
µγ3 1.00 1.9363 1.0091
σ2
γ1

1.61 0.3689 1.0183
σ2
γ2

0.05 0.0291 1.004
σ2
γ3

0.20 0.0456 1.0095
µτ1 1.05 0.5184 1.0164
µτ2 0.56 0.6129 1.0049
µτ3 0.75 0.4052 1.0025
σ2
τ1

0.82 0.619 1.0034
σ2
τ2

0.58 0.617 1.0019
σ2
τ3

0.70 0.5654 1.0011
σ2
β1

- 0.9827 1.0003
σ2
β2

- 1.0202 0.9999
σ2
β3

- 0.9874 0.9998

True value β = 2

Plot of comparison between priors and posteriors of all the 6 β is reported
in figure 5.5. As it can be noticed in the plots, all β parameters are centred
on their real value from the generated data while the prior in red is totally
uninformative. Summaries of β parameters are reported as well in the table
below. All parameters fluctuate around their real value 2.

Min. 1st Qu. Median Mean 3rd Qu. Max.
β1,1 1.881 1.990 2.025 2.024 2.055 2.160
β2,1 1.787 1.911 1.943 1.944 1.978 2.153
β1,2 1.853 2.008 2.048 2.048 2.088 2.250
β2,2 1.801 1.950 1.986 1.987 2.023 2.201
β1,3 1.903 2.008 2.044 2.044 2.077 2.215
β2,3 1.735 1.873 1.910 1.910 1.945 2.077

The plot of the actual fitting of the model on real data for a control patient,
is reported in figure 5.6. The plots represent the predicted level of the 3
biomarkers (in red) and the real measurements (dots) at each visit for the
control patient with ID=20.

The same is done for one case patient. On the biomarkers trajectories a
changepoint can be noticed. The plots are in figure 5.10.
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Figure 5.8: Prior vs Posterior
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Figure 5.9: Fitting of the model on a control patient
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Figure 5.10: Fitting of the model on a case patient
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Within 10 repetitions parameters mean of the means have been collected
and are compared with their true value, in the table below. The
Gelman-Rubin statistic stays under 1.04 in mean between the repetitions for
all the parameters. It can be concluded that there is not evidence for lack of
convergence. Moreover, the mean values are close to the real values with
whom the parameters have been generated.

Par. True v. Mean R̂
µθ1 2.43 2.4159 1.0001
µθ2 3.10 3.0959 0.9998
µθ3 2.75 2.6724 1.001
σ2
θ1

0.79 0.816 1.0003
σ2
θ2

0.80 0.8768 0.9999
σ2
θ3

0.79 0.7352 1.0006
σ2
1 0.23 0.2417 1.0006
σ2
2 1.35 1.3741 1.0009
σ2
3 0.80 0.8175 0.9998
µI 0.15 0.4004 1.0019
ηI 0.1 0.1003 1.0041
µγ1 1.87 2.3967 1.0453
µγ2 1.92 1.9604 1.0302

Par. True v. Mean R̂
µγ3 1.00 1.946 1.026
σ2
γ1

1.61 0.3754 1.0214
σ2
γ2

0.05 0.0294 1.0048
σ2
γ3

0.20 0.0451 1.0095
µτ1 1.05 0.5193 1.0155
µτ2 0.56 0.6112 1.0064
µτ3 0.75 0.3964 1.0037
σ2
τ1

0.82 0.6196 1.0039
σ2
τ2

0.58 0.6187 1.003
σ2
τ3

0.70 0.5633 1.0023
σ2
β1

- 2.4447 1.0008
σ2
β2

- 2.5023 1.0003
σ2
β3

- 2.4846 0.9999

Detection

HCC detection is carried out with covariate-free method and with
covariate-adjusted method. The accuracy in detection is compared between
the 2 methods: indeed, fixing the specificity to 90%, the aim is computing the
respective sensitivity. Relaxing the constraint on specificity to assume a
unique value, for each repetition a ROC curve is computed in comparison
between the new covariate-asjusted method and mFB approach.

Covariate-adjusted method with β = 0

Sensitivity with respect to a specificity of 90% within 10 repetitions are
collected in the following table.
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Simulation Covariate model Covariate-free model
1 71.43 75.51
2 75.51 77.55
3 79.59 81.63
4 71.43 77.55
5 77.55 73.47
6 73.47 85.71
7 77.55 75.51
8 75.51 71.43
9 81.63 79.59
10 77.55 77.55

Mean 76.12 77.55
S.e. 1.0556 1.2902

Sensitivity at the same specificity seems better in mFB method since all the
covariates are in this simulation study not informative at all.

Then, the specificity is not fixed and the ROC curve is computed. It is
represented for each repetition in figures 5.11, 5.12 in comparison between the
covariate-adjusted method and the mFB. No big differences can be appreciated
between plots from the 2 approaches.
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Figure 5.11: from 1 to 5 repetitions sensitivity comparison
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Figure 5.12: from 6 to 10 repetitions sensitivity comparison
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Covariate-adjusted method with β = 1

The sensitivity with respect to a specificity of 90% within all 10 repetitions
are collected in the following table.

Simulation Covariate model Covariate-free model
1 73.47 69.39
2 73.47 69.39
3 71.43 77.55
4 81.63 75.51
5 73.47 71.43
6 73.47 69.39
7 73.47 71.43
8 79.59 63.27
9 73.47 65.31
10 71.43 73.47

Mean 74.49 70.61
S.e. 1.0644 1.3699

Sensitivity at the same specificity seems better in the new covariate-adjusted
method since all covariates are informative.

Then, the specificity is not fixed and the ROC curve is computed. ROC
curves are represented for each repetition in figures 5.13, 5.14 in comparison
between the covariate-adjusted method and the mFB.
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Figure 5.13: from 1 to 5 repetitions sensitivity comparison
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Figure 5.14: from 6 to 10 repetitions sensitivity comparison
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Covariate-adjusted method with β = 2

Sensitivity with respect to a specificity of 90% within all 10 repetitions are
collected in the following table.

Simulation Covariate model Covariate-free model
1 73.47 61.22
2 73.47 69.39
3 77.55 65.3
4 73.47 67.35
5 73.47 75.51
6 77.55 67.35
7 77.55 63.27
8 77.55 75.51
9 75.51 75.51
10 79.59 69.39

Mean 75.918 68.981
S.e. 0.7323 1.6325

Sensitivity at the same specificity seems better in the new covariate-adjusted
method since all the covariates are informative.

Then, the specificity is not fixed and the ROC curve is computed. ROC
curves are represented for each repetition in the figures 5.15, 5.16 in comparison
between the new method and the old one.

69



5.1. SIMULATION STUDIES CHAPTER 5. RESULTS

Figure 5.15: from 1 to 5 repetitions sensitivity comparison
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Figure 5.16: from 6 to 10 repetitions sensitivity comparison
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5.2 HALT-C trial
The accuracy of the screening algorithm has been evaluated on the simulated
data, therefore it can be now evaluated in cirrhosis patients from the HALT-C
trial. Trajectories of log(AFP) and log(DCP+1) are assumed to follow the joint
model described above [Tayob et al., 2018]. The logarithmic transformation has
been made on biomarkers to keep low their range of variability and make them
more symmetric.

Given the absence of a validation data-set, computation of posterior risk
and consequently sensitivity are in-sample. That is the reason why results will
be optimistic, and this fact has to be taken into account.

5.2.1 Data descriptive summaries

The Halt-C trial data carries a big amount of information. Patients are in total
409. The dataset consists of:

• RAND GRP indicates the randomization group (1=treatment,
2=control). 197 patients are assigned to treatment, 212 to control.
Treatment consists of an interferon-based therapy.

• CIRRHOSIS, indicates if patients have cirrhosis (1=yes, 0=no). The
100% of HALT-C patients have cirrhosis.

• HCC, indicates if patients have HCC (1=yes, 0=no). Cotrols are 361,
cases are 48.

• days HCC counts how many days before HCC has be detected.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 1852.00 2289.00 2186.28 2590.00 3161.00

• Early stage HCC indicates if HCC is detected at early stage (1=yes,
0=no). 36 are early detected out of 48 cases.

• VISIT DAYS indicate days from randomization to visit

Min. 1st Qu. Median Mean 3rd Qu. Max.
-965.00 -252.00 -217.00 -231.86 -183.00 -22.00
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• AFP level at each visit

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.30 5.90 10.10 23.60 19.60 7051.20 371.00

• DCP level at each visit

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.00 11.10 22.40 91.17 41.20 29022.90 1747.00

• AGE at enrollment in years

Min. 1st Qu. Median Mean 3rd Qu. Max.
19.00 46.00 50.00 50.22 54.00 77.00

• FEMALE indicates the gender (0:male, 1:female). 112 patients are
females. 297 are males.

• HISP, WHITE, BLACK, OTHERS are dichotomous and indicate if the
patient is or Hispanic, white, black either none of those races. 292 are
white, 62 are black, 49 are hispanics and 6 of other races.

• FIBRO ISHAK score indicates the liver fibrosis stage in which the
patient is at screening biopsy. Stages are discrete and they can be
divided in the following way: "non-significant fibrosis" for Ishak score =
(0, 1, 2); "significant fibrosis" for Ishak score = (3, 4); "advanced stage
of fibrosis" for Ishak score = (5, 6). An increase in severity of fibrosis is
linear between stages [Rosenberg et al., 2004]. 224 patients have
fibrosis, 185 have cirrhosis.

• alt, ast indicate results of blood tests named respectively Alanine
Aminotransferase (ALT) and Aspartate Aminotransferase (AST) that
check for liver damages [Wikipedia contributors, 2019a], [Wikipedia
contributors, 2019b].

Min. 1st Qu. Median Mean 3rd Qu. Max.
20.00 65.00 95.00 117.07 144.00 647.00
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Min. 1st Qu. Median Mean 3rd Qu. Max.
22.00 60.00 86.00 102.61 128.00 518.00

• DIABETES, indicates if patients have diabetes (0:not, 1:yes). 329 are
positive, 80 are negative.

• BMI indicates body mass index at baseline (weight (kg)/height(m)2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
19.69 26.43 29.65 30.28 33.01 48.97

• EVERDRANK indicates if the patient has ever drank in the lifetime
(0:not, 1:yes). 341 patients did, 68 did not.

• LIFE DRINKS indicates the total number of drinks lifetime

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.00 1596.00 8424.00 19141.34 25110.00 357314.40 2.00

• AVE GRAMS P D indicates the average grams of alcohol per day

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.00 2.54 11.72 26.41 33.30 434.79 2.00

• SMOKE CIG NOW indicates if the patient smokes. 120 used to smoke
cigarettes at the enrollment time. 289 did not.

• SMOKESTAT indicates the amount of smoking (1=Never; 2=Not now;
3=Now less than 1pack/day; 4=Now ≥ 1pack/day)

1 2 3 4
91 198 70 50

• PACKYEARS indicates how many cigarettes packs do the patient smoke

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.00 0.90 8.00 14.35 23.00 92.00 6.00
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• platelets, with unit of measurement x1000/mm3

Min. 1st Qu. Median Mean 3rd Qu. Max.
46.00 91.00 125.00 133.81 163.00 425.00

• albumin, with unit of measurement g/dL

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.70 3.50 3.80 3.76 4.10 4.90

• tot bilirubi, with unit of measurement mg/dL

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.20 0.60 0.80 0.89 1.10 3.80

5.2.2 Covariate-adjusted approach on HALT-C

Some results of the new approach applied to real data from Halt-C Trial are
reported in this section. First of all, results from both the old and the new
approach are reported in order to make a comparison between methods.

Approach Sensitivy (ROC 0.1) AUC
Fixed cut-off AFP 60.42% 0.84
Fixed cut-off DCP 56.25% 0.78
mFB 89.58% 0.95
2 covariates-adjusted 83.33% 0.89
8 covariates-afjusted 85.42% 0.93

Some other statistics about 2 covariates-adjusted approach and 8 covariates-
adjusted approach are reported in the following sections.

AGE and FEMALE

Summaries of β parameters with respect to age and female are reported in the
following table. Subscript "1" indicates AFP, subscript "2" indicates DCP.
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Par. Min. 1st Qu. Median Mean 3rd Qu. Max.
βAGE,1 -0.013841 -0.008650 -0.004570 -0.002062 0.001148 0.018818
βF,1 0.02579 0.26322 0.32484 0.32002 0.38101 0.55157
βAGE,2 -0.019894 -0.007863 -0.004939 -0.005083 -0.002342 0.008819
βF,2 -0.82371 -0.47719 -0.40728 -0.40862 -0.34004 -0.03669

Plots of comparison between not informative priors (in red) and posteriors
(in black) are in figure 5.17. Posterior distributions result more informative
than priors. Female seems to have a positive effect on AFP trajectory and a
negative effect on DCP trajectory. While age seems not significant but, since
it is measured in years it has an appreciable effect only over time.

Figure 5.17: Prior vs Posterior

Some fitting graphical analysis are in figure 5.18. Four different case
patients are analyzed in order to observe all the possible situations with 2
biomarkers AFP and DCP. Subject 1 has high probability of observing a
changepoint in both biomarkers AFP and DCP, respectively 94% and 76%;
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Figure 5.18: New Approach Fitting
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subject 2 has an almost certain probability at 99.9% of observing a
changepoint in AFP trajectory but a lower probability at 58.4% of observing
a changepoint in DCP; subject 3 does not show a changepoint in AFP but it
does in DCP with probability 96.8%; subject 4 has a very high probability of
observing a changepoint in both AFP and DCP, respectively 99.9% and
100%. Timing of changepoints within patients seems to be similar except in
subject 1.

Posterior values of used parameters are collected in the following table:

Parameter Mean Sd R̂
µθAFP 2.4681 0.4011 1.1248
µθDCP 3.4021 0.217 1.071
σ2
θAFP

0.8148 0.0596 1.0099
σ2
θDCP

0.6808 0.0573 0.9999
σ2
AFP 0.2020 0.0037 1.0036
σ2
DCP 1.3448 0.027 1.0006
µI -0.1364 0.1998 1.0052
ηI 0.1174 0.0499 1.0015

µγAFP 1.8898 0.2751 1.0006
µγDCP 1.9059 0.2519 1.0432
σ2
γAFP

1.5345 0.8566 1.0095
σ2
γDCP

0.0555 0.0673 1.0133
µτAFP 1.0638 0.333 1.0118
µτDCP 0.6205 0.2807 1.0104
σ2
τAFP

0.7855 0.2701 1.0045
σ2
τDCP

0.5918 0.2061 1.0015
σ2
βAFP

0.5295 0.5115 1.0001
σ2
βDCP

0.5543 0.6343 1.0001

AGE, FEMALE, HISP, BLACK, OTHERS, FIBRO ISHAK, alt, ast

Combining 2 biomarkers AFP and DCP sensitivity increases significantly
from 2 covariates model to 8 covariates model. The increase amounts to
approximately 2 percentage points.

Some of the pre-clinical features have been selected because it was
interesting to assess their effect on AFP and DCP trajectories. Selected
variables or have a demographic nature either are about liver disease severity.
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Summaries of β parameters related to selected covariates are reported in
the following tables. They are referred to AFP, indexed as "biomarker 1" and
DCP, indexed as "biomarker 2". Covariate AGE does not seem to be significant
in both biomarkers but this phenomenon is only due to its measurement units
taken in year; FEMALE is a dichotomous variable and represents the effect of
female versus male; HISP, BLACK and OTHERS are 3 dummy variables and
they represent the effect of ethnicity they are referred to with respect to the
baseline ethnicity WHITE. FIBRO ISHAK (shorter ISHAK) represents the
effect of cirrhosis (stage 6) with respect to fibrosis as baseline (stage 5); alt
and ast represent the effect of blood tests they are referred to.

βAFP Min 1 qu. Median Mean 3 qu. Max
AGE 1 -0.028077 -0.013311 -0.009654 -0.009442 -0.005733 0.006802
FEM 1 -0.1608 0.1271 0.1989 0.1896 0.2588 0.4818
HISP 1 -0.2432 0.1860 0.2719 0.2736 0.3632 0.6697

BLACK 1 0.08213 0.45539 0.52728 0.52358 0.59701 0.91460
OTHERS 1 -0.2318 0.4214 0.6239 0.6286 0.8230 1.8280
ISHAK 1 -0.10347 0.06982 0.10948 0.10780 0.15072 0.28528

alt 1 -0.006334 -0.003419 -0.002779 -0.002766 -0.002115 0.001614
ast 1 0.000709 0.004814 0.005698 0.005659 0.006535 0.009571

βDCP Min 1 qu. Median Mean 3 qu. Max
AGE 2 -0.027529 -0.012547 -0.008719 -0.008850 -0.005136 0.010819
FEM 2 -0.80763 -0.53064 -0.46137 -0.46173 -0.39379 -0.06722
HISP 2 -0.439255 -0.081797 0.001645 0.003076 0.085616 0.434941

BLACK 2 -0.53304 -0.18956 -0.11363 -0.11477 -0.04048 0.37260
OTHERS 2 -0.73698 0.03823 0.22509 0.22221 0.40179 1.35373
ISHAK 2 -0.161891 0.008433 0.047827 0.047417 0.086879 0.251227

alt 2 -0.009463 -0.005945 -0.005257 -0.005253 -0.004567 -0.001343
ast 2 0.001682 0.006212 0.007032 0.007039 0.007889 0.011551
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Model fitting is assessed graphically. Four different case patients are
analyzed in order to observe all the possible situations with 2 biomarkers
AFP and DCP. Subject 1 has high probability of observing a changepoint in

Figure 5.19: 8 covariates approach fitting

both biomarkers, 95.2% and 79.3% respectively for AFP and DCP; timing of
the 2 changepoints seems to be vey different. Subject 2 has the certainty of
observing a changepoint in AFP trajectory and a less clearly defined
changepoint in DCP compared to AFP with probability 57.2%; subject 3
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shows a not significant changepoint in AFP but a significant one in DCP
with probability 97.1%; subject 4 has a very high probability of observing a
changepoint in both AFP and DCP, respectively at 99.9% and 100%.

Figure 5.20: ROC curve on AFP, DCP, jointly

ROC curves are reported in figure 5.20, where AFP with a fixed cut-off
model is represented in black, DCP with a fixed cut-off is in grey and model
combining AFP and DCP with subject-specific cut-off is in blue. It is shown
that the joint model has always the highest sensitivity, keeping the specificity
fixed.
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Chapter 6

Discussion

Early detection of HCC is an incredible powerful tool to allow patients to
undertake successful treatments. Screening tests for early detection have to
be as non-invasive as possible and as inexpensive as possible to allow its
widespread use. Longitudinal biomarkers are a widely used diagnostic tool
because they totally respect the desirable characteristics of a screening test.
Biomarkers methods tend to have a high sensitivity but a low specificity, that
is the reason why a priority in screening tests is to maintain low the false
positive rate (FPR) in order to reduce costs and unnecessary anxiety. Indeed,
it is not preferable to make patients undergo additional tests to ensure that
their real disease status is the one predicted, if they are actually healthy.
Multiple longitudinal biomarkers are necessary to obtain a screening test
with both high sensitivity and high specificity [Pepe et al., 2001].

Usually survaillance programmes are taken on highly risk chirrosis
patients, like patients in HALT-C trial. Patients are recommended to
undertake ultrasonography along with measurements of AFP. Moreover,
lately DCP showed its potential in higher sensitivity.

But AFP and DCP with fixed threshold for posterior risk computation
turned out to have a lower sensitivity than jointly modeling their
changepoints [Tayob et al., 2018]. Indeed, the aim with mFB model was to
borrow information across biomarkers to identify changepoints that were
more subtle. The same has been done in this work (some graphical examples
are in sections 5.1.3, subject 3 in figure 5.18). In addition, we wanted to
develop an extension of the mFB model to increasingly well capture the wide
ranges of trajectories and identify future HCC cases earlier with more
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accuracy.
It emerged that covariate-adjusted method proposed in this work is more

likely to have higher sensitivity than mFB approach when prediction is made
using a training set and a validation set (section 5.1.3). Indeed, the logic is
including in the model covariates that may capture a component of the
variation of the biomarker trajectory, and in that way improving the
accuracy of the screening test.

On the contrary, results from Halt-C trial data are optimistic because the
posterior risk computation is in-sample. If predictions are made in-sample then
mFB is enough flexible to give very good results. Sensitivity from mFB results
89.5% as in Tayob et al. [2018]. It is higher than the sensitivity in model
proposed here with 8 covariates that is about 85.42%.

Another reason to explain the lower sensitivity in covariate-adjusted
approach may be that some variables have to be excluded from the model.
Variables selection could be an crucial step to add to the algorithm in order
to sharpen the accuracy of disease status prediction. This is a sketch for a
future development. Another step that surely have to be computed is a
10-fold cross-validation to better assess the reliability of results.

However, an increase in accuracy can be registered when more covariates
are involved in the model. Indeed, sensitivity in 2-covariates model results
83.33% more than 2 percentage points less than the 8-covariates model
sensitivity. Furthermore, it is shown that in 8-covariates approach the
probability of observing a changepoint in case patients is higher than the
probability in same subjects in the 2-covariates model. These results can be
appreciated comparing figures 5.18 and 5.19.

Future works include the development of involving covariates in the
model that affect biomarkers trajectories directly on the baseline risk of
disease. We are working on this method since we finished to draw up the
method described in the current work. Baseline covariates are hypothesized
to be factors that affect the probability of being a case. Prior prevalence
P (DN+1 = 1) is estimated from training data or another external source or a
combination of both. Therefore a simply Bayesian logistic regression model
can be conducted, independently from the model for the biomarkers.
Therefore this method consists in implementing two separate models: one for
longitudinal biomarkers trajectories and one for posterior risk of disease.

Last but not least, we just considered pre-clinical variables stable in time. A
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very interesting development may be including time-varying covariates in the
model, since they are supposed to have a crucial potential in order to increase
world wide HCC survival rate.

We can conclude that overall covariates showed their potential in the
current work. They could provide a critical increase in HCC early detection,
and then in survival rate. The step to take now is finding the way to optimize
their potential.
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